149 research outputs found

    Sleep disturbances in Wolfram syndrome

    Get PDF
    BACKGROUND: Wolfram syndrome is a rare disorder associated with diabetes mellitus, diabetes insipidus, optic nerve atrophy, hearing and vision loss, and neurodegeneration. Sleep complaints are common but have not been studied with objective measures. Our goal was to assess rates of sleep apnea and objective and self-reported measures of sleep quality, and to determine the relationship of sleep pathology to other clinical variables in Wolfram syndrome patients. METHODS: Genetically confirmed Wolfram syndrome patients were evaluated at the 2015 and 2016 Washington University Wolfram Syndrome Research Clinics. Patients wore an actigraphy device and a type III ambulatory sleep study device and completed the Epworth Sleepiness Scale (ESS), the Pittsburgh Sleep Quality Index (PSQI) and/or the Pediatric Sleep Questionnaire (PSQ). PSQI and PSQ questionnaire data were compared to a previously collected group of controls. Patients were characterized clinically with the Wolfram Unified Rating Scale (WURS) and a subset underwent magnetic resonance imaging (MRI) for brain volume measurements. RESULTS: Twenty-one patients were evaluated ranging from age 8.9-29.7 years. Five of 17 (29%) adult patients fit the criteria for obstructive sleep apnea (OSA; apnea-hypopnea index [AHI] ≥ 5) and all 4 of 4 (100%) children aged 12 years or younger fit the criteria for obstructive sleep apnea (AHI\u27s ≥ 1). Higher AHI was related to greater disease severity (higher WURS Physical scores). Higher mixed apnea scores were related to lower brainstem and cerebellar volumes. Patients\u27 scores on the PSQ were higher than those of controls, indicating greater severity of childhood obstructive sleep-related breathing disorders. CONCLUSIONS: Wolfram syndrome patients had a high rate of OSA. Further study would be needed to assess how these symptoms change over time. Addressing sleep disorders in Wolfram syndrome patients would likely improve their overall health and quality of life

    A single brain-derived neurotrophic factor infusion into the dorsomedial prefrontal cortex attenuates cocaine self-administration-induced phosphorylation of synapsin in the nucleus accumbens during early withdrawal

    Get PDF
    BACKGROUND: Dysregulation in the prefrontal cortex-nucleus accumbens pathway has been implicated in cocaine addiction. We have previously demonstrated that one intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor (BDNF) infusion immediately following the last cocaine self-administration session caused a long-lasting inhibition of cocaine-seeking and normalized the cocaine-induced disturbance of glutamate transmission in the nucleus accumbens after extinction and a cocaine prime. However, the molecular mechanism mediating the brain-derived neurotrophic factor effect on cocaine-induced alterations in extracellular glutamate levels is unknown. METHODS: In the present study, we determined the effects of brain-derived neurotrophic factor on cocaine-induced changes in the phosphorylation of synapsin (p-synapsin), a family of presynaptic proteins that mediate synaptic vesicle mobilization, in the nucleus accumbens during early withdrawal. RESULTS: Two hours after cocaine self-administration, p-synapsin Ser9 and p-synapsin Ser62/67, but not p-synapsin Ser603, were increased in the nucleus accumbens. At 22 hours, only p-synapsin Ser9 was still elevated. Elevations at both time points were attenuated by an intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor infusion immediately after the end of cocaine self-administration. Brain-derived neurotrophic factor also reduced cocaine self-administration withdrawal-induced phosphorylation of the protein phosphatase 2A C-subunit, suggesting that brain-derived neurotrophic factor disinhibits protein phosphatase 2A C-subunit, consistent with p-synapsin Ser9 dephosphorylation. Further, co-immunoprecipitation demonstrated that protein phosphatase 2A C-subunit and synapsin are associated in a protein-protein complex that was reduced after 2 hours of withdrawal from cocaine self-administration and reversed by brain-derived neurotrophic factor. CONCLUSIONS: Taken together, these findings demonstrate that brain-derived neurotrophic factor normalizes the cocaine self-administration–induced elevation of p-synapsin in nucleus accumbens that may underlie a disturbance in the probability of neurotransmitter release or represent a compensatory neuroadaptation in response to the hypofunction within the prefrontal cortex-nucleus accumbens pathway during cocaine withdrawal

    Neuroinflammation and white matter alterations in obesity assessed by Diffusion Basis Spectrum Imaging

    Get PDF
    Human obesity is associated with low-grade chronic systemic inflammation, alterations in brain structure and function, and cognitive impairment. Rodent models of obesity show that high-calorie diets cause brain inflammation (neuroinflammation) in multiple regions, including the hippocampus, and impairments in hippocampal-dependent memory tasks. To determine if similar effects exist in humans with obesity, we applied Diffusion Basis Spectrum Imaging (DBSI) to evaluate neuroinflammation and axonal integrity. We examined diffusion-weighted magnetic resonance imaging (MRI) data in two independent cohorts of obese and non-obese individuals (Cohort 1: 25 obese/21 non-obese; Cohort 2: 18 obese/41 non-obese). We applied Tract-based Spatial Statistics (TBSS) to allow whole-brain white matter (WM) analyses and compare DBSI-derived isotropic and anisotropic diffusion measures between the obese and non-obese groups. In both cohorts, the obese group had significantly greater DBSI-derived restricted fraction (DBSI-RF; an indicator of neuroinflammation-related cellularity), and significantly lower DBSI-derived fiber fraction (DBSI-FF; an indicator of apparent axonal density) in several WM tracts (all correcte

    Associations between socioeconomic status, obesity, cognition, and white matter microstructure in children

    Get PDF
    IMPORTANCE: Lower neighborhood and household socioeconomic status (SES) are associated with negative health outcomes and altered brain structure in children. It is unclear whether such findings extend to white matter and via what mechanisms. OBJECTIVE: To assess whether and how neighborhood and household SES are independently associated with children\u27s white matter microstructure and examine whether obesity and cognitive performance (reflecting environmental cognitive and sensory stimulation) are plausible mediators. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study used baseline data from participants in the Adolescent Brain Cognitive Development (ABCD) study. Data were collected at 21 US sites, and school-based recruitment was used to represent the US population. Children aged 9 to 11 years and their parents or caregivers completed assessments between October 1, 2016, and October 31, 2018. After exclusions, 8842 of 11 875 children in the ABCD study were included in the analyses. Data analysis was conducted from July 11 to December 19, 2022. EXPOSURES: Neighborhood disadvantage was derived from area deprivation indices at participants\u27 primary residence. Household SES factors were total income and highest parental educational attainment. MAIN OUTCOMES AND MEASURES: A restriction spectrum imaging (RSI) model was used to quantify restricted normalized directional (RND; reflecting oriented myelin organization) and restricted normalized isotropic (RNI; reflecting glial and neuronal cell bodies) diffusion in 31 major white matter tracts. The RSI measurements were scanner harmonized. Obesity was assessed through body mass index (BMI; calculated as weight in kilograms divided by height in meters squared), age- and sex-adjusted BMI z scores, and waist circumference, and cognition was assessed through the National Institutes of Health Toolbox Cognition Battery. Analyses were adjusted for age, sex, pubertal development stage, intracranial volume, mean head motion, and twin or siblingship. RESULTS: Among 8842 children, 4543 (51.4%) were boys, and the mean (SD) age was 9.9 (0.7) years. Linear mixed-effects models revealed that greater neighborhood disadvantage was associated with lower RSI-RND in the left superior longitudinal fasciculus (β = -0.055; 95% CI, -0.081 to -0.028) and forceps major (β = -0.040; 95% CI, -0.067 to -0.013). Lower parental educational attainment was associated with lower RSI-RND in the bilateral superior longitudinal fasciculus (eg, right hemisphere: β = 0.053; 95% CI, 0.025-0.080) and bilateral corticospinal or pyramidal tract (eg, right hemisphere: β = 0.042; 95% CI, 0.015-0.069). Structural equation models revealed that lower cognitive performance (eg, lower total cognition score and higher neighborhood disadvantage: β = -0.012; 95% CI, -0.016 to -0.009) and greater obesity (eg, higher BMI and higher neighborhood disadvantage: β = -0.004; 95% CI, -0.006 to -0.001) partially accounted for the associations between SES and RSI-RND. Lower household income was associated with higher RSI-RNI in most tracts (eg, right inferior longitudinal fasciculus: β = -0.042 [95% CI, -0.073 to -0.012]; right anterior thalamic radiations: β = -0.045 [95% CI, -0.075 to -0.014]), and greater neighborhood disadvantage had similar associations in primarily frontolimbic tracts (eg, right fornix: β = 0.046 [95% CI, 0.019-0.074]; right anterior thalamic radiations: β = 0.045 [95% CI, 0.018-0.072]). Lower parental educational attainment was associated with higher RSI-RNI in the forceps major (β = -0.048; 95% CI, -0.077 to -0.020). Greater obesity partially accounted for these SES associations with RSI-RNI (eg, higher BMI and higher neighborhood disadvantage: β = 0.015; 95% CI, 0.011-0.020). Findings were robust in sensitivity analyses and were corroborated using diffusion tensor imaging. CONCLUSIONS AND RELEVANCE: In this cross-sectional study, both neighborhood and household contexts were associated with white matter development in children, and findings suggested that obesity and cognitive performance were possible mediators in these associations. Future research on children\u27s brain health may benefit from considering these factors from multiple socioeconomic perspectives

    Neuroinflammation in the amygdala is associated with recent depressive symptoms

    Get PDF
    BACKGROUND: Converging evidence suggests that elevated inflammation may contribute to depression. Yet, the link between peripheral inflammation and neuroinflammation in depression is unclear. Here, using data from the UK Biobank, we estimated associations among depression, C-reactive protein (CRP) as a measure of peripheral inflammation, and neuroinflammation as indexed by diffusion basis spectral imaging-based restricted fraction (DBSI-RF). METHODS: DBSI-RF was derived from diffusion-weighted imaging data (N = 11,512) for whole-brain gray matter (global-RF), and regions of interest in the bilateral amygdala (amygdala-RF) and hippocampus (hippocampus-RF), and CRP was estimated from blood (serum) samples. Self-reported recent depression symptoms were measured using a 4-item assessment. Linear regressions were used to estimate associations between CRP and DBSI-RFs with depression while adjusting for the following covariates: age, sex, body mass index, smoking, drinking, and medical conditions. RESULTS: Elevated CRP was associated with higher depression symptoms (β = 0.04, false discovery rate-corrected p \u3c .005) and reduced global-RF (β = -0.03, false discovery rate-corrected p \u3c .001). Higher amygdala-RF was associated with elevated depression-an effect resilient to added covariates and CRP (β = 0.02, false discovery rate-corrected p \u3c .05). Interestingly, this association was stronger in individuals with a lifetime history of depression (β = 0.07, p \u3c .005) than in those without (β = 0.03, p \u3c .05). Associations between global-RF or hippocampus-RF with depression were not significant, and no DBSI-RF indices indirectly linked CRP with depression (i.e., mediation effect). CONCLUSIONS: Peripheral inflammation and DBSI-RF neuroinflammation in the amygdala are independently associated with depression, consistent with animal studies suggesting distinct pathways of peripheral inflammation and neuroinflammation in the pathophysiology of depression and with investigations highlighting the role of the amygdala in stress-induced inflammation and depression

    Acute changes in mood induced by subthalamic deep brain stimulation in Parkinson disease are modulated by psychiatric diagnosis

    Get PDF
    BACKGROUND: Deep brain stimulation of the subthalamic nucleus (STN DBS) reduces Parkinson disease (PD) motor symptoms but has unexplained, variable effects on mood. OBJECTIVE: The study tested the hypothesis that pre-existing mood and/or anxiety disorders or increased symptom severity negatively affects mood response to STN DBS. METHODS: Thirty-eight PD participants with bilateral STN DBS and on PD medications were interviewed with Structured Clinical Interview for DSM-IV-TR Axis I Disorders (SCID) and completed Beck Depression Inventory (BDI) and Spielberger State Anxiety Inventory (SSAI) self-reports. Subsequently, during OFF and optimal ON (clinical settings) STN DBS conditions and while off PD medications, motor function was assessed with the United Parkinson Disease Rating Scale (UPDRS, part III), and participants rated their mood with Visual Analogue Scales (VAS), and again completed SSAI. VAS mood variables included anxiety, apathy, valence and emotional arousal. RESULTS: STN DBS improved UPDRS scores and mood. Unexpectedly, PD participants diagnosed with current anxiety or mood disorders experienced greater STN DBS-induced improvement in mood than those diagnosed with remitted disorders or who were deemed as having never met threshold criteria for diagnosis. BDI and SSAI scores did not modulate mood response to STN DBS, indicating that clinical categorical diagnosis better differentiates mood response to STN DBS than self-rated symptom severity. SCID diagnosis, BDI and SSAI scores did not modulate motor response to STN DBS. CONCLUSIONS: PD participants diagnosed with current mood or anxiety disorders are more sensitive to STN DBS-induced effects on mood, possibly indicating altered basal ganglia circuitry in this group

    Cosmological Constraints from the SDSS maxBCG Cluster Catalog

    Get PDF
    We use the abundance and weak lensing mass measurements of the SDSS maxBCG cluster catalog to simultaneously constrain cosmology and the richness--mass relation of the clusters. Assuming a flat \LambdaCDM cosmology, we find \sigma_8(\Omega_m/0.25)^{0.41} = 0.832\pm 0.033 after marginalization over all systematics. In common with previous studies, our error budget is dominated by systematic uncertainties, the primary two being the absolute mass scale of the weak lensing masses of the maxBCG clusters, and uncertainty in the scatter of the richness--mass relation. Our constraints are fully consistent with the WMAP five-year data, and in a joint analysis we find \sigma_8=0.807\pm 0.020 and \Omega_m=0.265\pm 0.016, an improvement of nearly a factor of two relative to WMAP5 alone. Our results are also in excellent agreement with and comparable in precision to the latest cosmological constraints from X-ray cluster abundances. The remarkable consistency among these results demonstrates that cluster abundance constraints are not only tight but also robust, and highlight the power of optically-selected cluster samples to produce precision constraints on cosmological parameters.Comment: comments welcom

    Constraining warm dark matter with cosmic shear power spectra

    Full text link
    We investigate potential constraints from cosmic shear on the dark matter particle mass, assuming all dark matter is made up of light thermal relic particles. Given the theoretical uncertainties involved in making cosmological predictions in such warm dark matter scenarios we use analytical fits to linear warm dark matter power spectra and compare (i) the halo model using a mass function evaluated from these linear power spectra and (ii) an analytical fit to the non-linear evolution of the linear power spectra. We optimistically ignore the competing effect of baryons for this work. We find approach (ii) to be conservative compared to approach (i). We evaluate cosmological constraints using these methods, marginalising over four other cosmological parameters. Using the more conservative method we find that a Euclid-like weak lensing survey together with constraints from the Planck cosmic microwave background mission primary anisotropies could achieve a lower limit on the particle mass of 2.5 keV.Comment: 26 pages, 9 figures, minor changes to match the version accepted for publication in JCA
    • …
    corecore